

rev. 08/02/16

Cat#: ET1610-89

Product Type: Recombinant rabbit monoclonal IgG, primary

antibodies

Species reactivity: Human, Mouse, Rat, Zebra fish

Applications: WB, ICC/IF, IHC, IP, FC

Molecular Wt.: 54 kDa

Description: Interferon regulatory factor-1 (IRF-1) and IRF-2 have been identified as novel DNA-binding factors that function as regulators of both type I interferon (interferon- α and β) and interferon-inducible genes. The two factors are structurally related, particularly in their N-terminal regions, which confer DNA binding specificity. In addition, both bind to the same sequence within the promoters of interferon- α and interferon- β genes. IRF-1 functions as an activator of interferon transcription. while IRF-2 binds to the same cis elements and represses IRF-1 action. IRF-1 and IRF-2 have been reported to act in a mutually antagonistic manner in regulating cell growth; overexpression of the repressor IRF-2 leads to cell transformation while concomitant overexpression of IRF-1 causes reversion. IRF-1 and IRF-2 are members of a larger family of DNA binding proteins that includes IRF-3. IRF-4, IRF-5, IRF-6, IRF-7 and IFN consensus sequence-binding protein (ICSBP).

Immunogen:

Recombinant protein.

Positive control:

Jurkat, Raji, PC-12, HepG2, mouse liver tissue, human tonsil tissue, mouse kidney tissue, human spleen tissue, mouse heart tissue, human kidney tissue.

Subcellular location:

Nucleus, Cytoplasm.

Database links:

SwissProt: Q92985 (Human) P70434 (Mouse) Unigene: 101159 (Rat)

Recommended Dilutions:

WB: 1:1,000-1:2,000 **ICC:** 1:100-1:500 **IHC:** 1:50-1:100 **FC:** 1:50-1:100

Storage Buffer:

1*TBS (pH7.4), 1%BSA, 40%Glycerol. Preservative: 0.05% Sodium Azide.

Storage Instruction:

Store at +4 $^{\circ}$ C after thawing. Aliquot store at -20 $^{\circ}$ C or -80 $^{\circ}$ C. Avoid repeated freeze / thaw cycles.

Purity:

ProA affinity purified.

Fig1: Western blot analysis of IRF7 on different lysates using anti-IRF7 antibody at 1/1,000 dilution

Positive control:

Lane 1: Jurkat

Lane 2: Raji

Fig2: ICC staining IRF7 in PC-12 cells (green). The nuclear counter stain is DAPI (blue). Cells were fixed in paraformaldehyde, permeabilised with 0.25% Triton X100/PBS.

Fig3: ICC staining IRF7 in HepG2 cells (green). The nuclear counter stain is DAPI (blue). Cells were fixed in paraformaldehyde, permeabilised with 0.25% Triton X100/PBS.

Fig4: ICC staining IRF7 in 293 cells (green). The nuclear counter stain is DAPI (blue). Cells were fixed in paraformaldehyde, permeabilised with 0.25% Triton X100/PBS.

Fig5: Immunohistochemical analysis paraffin-embedded human tonsil tissue using anti-IRF7 antibody. Counter stained hematoxylin.

Fig6: Immunohistochemical analysis paraffin-embedded human spleen tissue using anti-IRF7 antibody. Counter stained hematoxylin.

Fig7: Immunohistochemical analysis of paraffin-embedded human kidney tissue using anti-IRF7 antibody. Counter stained hematoxylin.

Fig8: Immunohistochemical paraffin-embedded mouse liver tissue using anti-IRF7 antibody. Counter stained with hematoxylin.

Fig9: Immunohistochemical analysis paraffin-embedded mouse kidney tissue using anti-IRF7 antibody. Counter stained hematoxylin.

Fig10: Immunohistochemical analysis paraffin-embedded mouse heart tissue using antibody.anti-IRF7 Counter stained with hematoxylin.

Fig11: Flow cytometric analysis of Jurkat cells with IRF7 antibody at 1/50 dilution (red) compared with an unlabelled control (cells without incubation with primary antibody; black). Alexa Fluor 488-conjugated goat anti rabbit IgG was used as the secondary antibody.

Fig12: Western blot analysis of IRF7 on zebrafish tissue lysates using anti-IRF7 antibody.

Background References

- 1. Zhang Y et al. Hantaan virus infection induces CXCL10 expression through TLR3, RIG-I, and MDA-5 pathways correlated with the disease severity. Mediators Inflamm 2014:697837 (2014).
- 2. de Verteuil DA et al. Immunoproteasomes shape the transcriptome and regulate the function of dendritic cells.

 J Immunol 193:1121-32 (2014).

